Preliminary Transportation Recommendations for the Wheaton Sector Plan

Presentation to Sector Plan Work Group/WRAC
October 5, 2009
Wheaton Presentation Topics

- Where we are: Opportunities for improvement, What We Have Heard
- Where do we want to be: Vision
- How do we get there: Network, Model, Policies, Street Design
Wheaton Transportation Cues
Wheaton Transportation Vision
Wheaton Connectivity

Typical Subdivision Cul-de-Sacs

Well-Connected Street Network
Wheaton Connectivity

163 Intersections
214 Street Segments

Connectivity Index = 214/163 = 1.3
Wheaton Connectivity

163 Intersections
214 Street Segments

Connectivity Index = 214/163 = 1.3

102 Intersections
143 Street Segments

Connectivity Index = 143/102 = 1.4
Wheaton Kittelson Connectivity Concepts

Source: Wheaton Station Area Pedestrian Safety Evaluation, Kittelson and Associates, November 2004
Wheaton Kittelson Connectivity Concepts

Source: Wheaton Station Area Pedestrian Safety Evaluation, Kittelson and Associates, November 2004
Wheaton ULI TAP Connectivity Concepts

Source: Wheaton ULI TAP, Preliminary Findings, September 2009
Wheaton ULI TAP Connectivity Concepts

Source: Wheaton ULI TAP, Preliminary Findings, September 2009
voorbeeld text
Wheaton Plan for Transit

- Plan for VM and University BRT Service
- Enhance Connections to Metrorail station
- Coordinate with Ongoing WMATA and MCDOT Studies
 - Wheaton Station Study
 - County BRT Study
- Include Local and Feeder Bus Networks
Wheaton Improve Bicycle and Pedestrian Facilities

- Designate Sector Plan Area as Bicycle/Ped. Priority Area
- Reinforce Connections to Park Trails
 - Striping
 - Wayfinding
- Include Appropriate Accommodations On State Hwys.
- Develop Bike Route Alternatives
- Shorten Block Lengths
Wheaton Enhance Mobility

- Use a combination of tools to address:
 - Access to transit/Metro
 - Walkability
 - Safety

- Reduce VMT growth via:
 - appropriate development mix
 - increase non-auto mode share
 - enhanced bicycle and pedestrian facilities

- Where Appropriate - Increase Intersection Capacity
 - Signal Improvements
 - Lane Utilization/Priority
 - Consider One Way Streets
Wheaton Model Analysis

- Completed Four Model Runs
 - Existing Network
 - Existing Density
 - Proposed High Density
 - Potential Network
 - Proposed High Density
 - Potential Network with BRT
 - Proposed High Density

<table>
<thead>
<tr>
<th>Demographics (Scenario #)</th>
<th>Network A (Existing)</th>
<th>C (Phase I+ II)</th>
<th>C1 (Phase I + II w/ BRT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (0)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High (2)</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Wheaton Model Analysis

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Commercial (GSF)</th>
<th>Residential (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>3.7 M</td>
<td>2,400</td>
</tr>
<tr>
<td>Round 7.1</td>
<td>3.8 M</td>
<td>5,600</td>
</tr>
<tr>
<td>High</td>
<td>7.6 M</td>
<td>9,400</td>
</tr>
</tbody>
</table>

- **Assumption**
 - 30% Non Auto Mode Share
Wheaton Model Results

Critical Lane Volumes perform well with existing and new network

<table>
<thead>
<tr>
<th>Intersection</th>
<th>LATR Std.</th>
<th>AM</th>
<th>PM</th>
<th>V/C Ratio</th>
<th>AM</th>
<th>PM</th>
<th>V/C Ratio</th>
<th>AM</th>
<th>PM</th>
<th>V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>202 Georgia Avenue (MD 97) @ Pylers Mill</td>
<td>1600</td>
<td>1641</td>
<td>1248</td>
<td>1.01</td>
<td>1662</td>
<td>1396</td>
<td>1.00</td>
<td>1593</td>
<td>1311</td>
<td>1.00</td>
</tr>
<tr>
<td>209 Georgia Avenue (MD 97) @ Windham</td>
<td>1800</td>
<td>1211</td>
<td>1247</td>
<td>0.69</td>
<td>1281</td>
<td>1334</td>
<td>0.74</td>
<td>1617</td>
<td>1491</td>
<td>0.90</td>
</tr>
<tr>
<td>204 Georgia Avenue (MD 97) @ Veirs Mill (MD 586)</td>
<td>1800</td>
<td>1112</td>
<td>948</td>
<td>0.62</td>
<td>1536</td>
<td>1043</td>
<td>0.85</td>
<td>1285</td>
<td>992</td>
<td>0.72</td>
</tr>
<tr>
<td>205 Georgia Avenue (MD 97) @ Reedie</td>
<td>1800</td>
<td>1032</td>
<td>1184</td>
<td>0.66</td>
<td>1529</td>
<td>1489</td>
<td>0.85</td>
<td>1488</td>
<td>1488</td>
<td>0.83</td>
</tr>
<tr>
<td>206 Georgia Avenue (MD 97) @ University (MD 193)</td>
<td>1800</td>
<td>1269</td>
<td>1171</td>
<td>0.71</td>
<td>1545</td>
<td>1642</td>
<td>0.91</td>
<td>1476</td>
<td>1526</td>
<td>0.85</td>
</tr>
<tr>
<td>207 Georgia Avenue (MD 97) @ Blueraidge</td>
<td>1800</td>
<td>1114</td>
<td>1206</td>
<td>0.67</td>
<td>1494</td>
<td>1599</td>
<td>0.88</td>
<td>1451</td>
<td>1536</td>
<td>0.82</td>
</tr>
<tr>
<td>208 Georgia Avenue (MD 97) @ Arcola</td>
<td>1600</td>
<td>1231</td>
<td>1471</td>
<td>0.85</td>
<td>1454</td>
<td>1703</td>
<td>1.08</td>
<td>1454</td>
<td>1703</td>
<td>1.08</td>
</tr>
<tr>
<td>213 Veirs Mill (MD 586) @ University (MD 193)</td>
<td>1800</td>
<td>1431</td>
<td>1451</td>
<td>0.81</td>
<td>1607</td>
<td>1643</td>
<td>0.91</td>
<td>1595</td>
<td>1528</td>
<td>0.89</td>
</tr>
<tr>
<td>215 University (MD 193) @ Grandview</td>
<td>1800</td>
<td>799</td>
<td>1000</td>
<td>0.79</td>
<td>843</td>
<td>1399</td>
<td>0.78</td>
<td>868</td>
<td>1272</td>
<td>0.71</td>
</tr>
<tr>
<td>217 University (MD 193) @ Amherst</td>
<td>1800</td>
<td>846</td>
<td>1060</td>
<td>0.59</td>
<td>1103</td>
<td>1378</td>
<td>0.77</td>
<td>849</td>
<td>1152</td>
<td>0.64</td>
</tr>
<tr>
<td>352 Veirs Mill (MD 586) @ Wheaton Metro</td>
<td>1800</td>
<td>565</td>
<td>884</td>
<td>0.49</td>
<td>1144</td>
<td>1776</td>
<td>0.96</td>
<td>853</td>
<td>1631</td>
<td>0.59</td>
</tr>
<tr>
<td>447 Veirs Mill (MD 586) @ Reedie</td>
<td>1800</td>
<td>836</td>
<td>959</td>
<td>0.53</td>
<td>1456</td>
<td>1462</td>
<td>0.81</td>
<td>1133</td>
<td>1382</td>
<td>0.77</td>
</tr>
<tr>
<td>471 University (MD 193) @ East</td>
<td>1800</td>
<td>583</td>
<td>707</td>
<td>0.39</td>
<td>682</td>
<td>1239</td>
<td>0.68</td>
<td>799</td>
<td>771</td>
<td>0.44</td>
</tr>
<tr>
<td>499 University (MD 193) @ Valley View</td>
<td>1800</td>
<td>394</td>
<td>705</td>
<td>0.39</td>
<td>456</td>
<td>759</td>
<td>0.48</td>
<td>337</td>
<td>619</td>
<td>0.34</td>
</tr>
<tr>
<td>727 University (MD 193) @ Reedie</td>
<td>1800</td>
<td>531</td>
<td>584</td>
<td>0.32</td>
<td>697</td>
<td>746</td>
<td>0.41</td>
<td>1180</td>
<td>1554</td>
<td>0.86</td>
</tr>
<tr>
<td>900 Veirs Mill Road @ Kensington</td>
<td>1800N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>1125</td>
<td>1142</td>
<td>0.63</td>
<td>1163</td>
<td>1201</td>
<td>0.72</td>
</tr>
<tr>
<td>901 Georgia Avenue (MD 97) @ Ennals</td>
<td>1800N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>1030</td>
<td>1112</td>
<td>0.62</td>
<td>1405</td>
<td>1780</td>
<td>1.08</td>
</tr>
<tr>
<td>902 Veirs Mill (MD 586) @ Ennals</td>
<td>1800N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>853</td>
<td>995</td>
<td>0.53</td>
<td>1085</td>
<td>1891</td>
<td>1.08</td>
</tr>
</tbody>
</table>
Wheaton Model Results

Wheaton CBD
Existing Critical Lane Volumes (CLVs)
Compared to LATR Standards

Data Source: M-NCPDC Intersection Database
Wheaton Model Results

Wheaton CBD
Future Critical Lane Volumes (CLVs)
Compared to LATR Standards
High Density Scenario
Wheaton BRT Options
Wheaton BRT Options

- **Veirs Mill Route**
 - Take advantage of BRT facilities for Veirs Mill BRT
 - Longest travel through congested intersections and most of CBD

- **Amherst Route**
 - Avoid much of CBD
 - Tight turns, streets may require lane changes, Reedie is steep

- **Georgia Ave. Route**
 - Direct Link to CBD using existing arterials
 - Requires new access to Metro Station from Georgia
Wheaton Next Steps

• Finalize Network
 • Rank and prioritize proposed connections
 • Address Concerns and Observations
 • Isolation of mall
 • Safety
 • Auto-dominant design of road network
 • Accessibility to METRO – wayfinding
 • Crossing Priorities

• Continue Cross Section Analysis
 • Refine street parking locations
 • Plan for bicycle amenities
 • Accommodate BRT